Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.11.05.21265977

ABSTRACT

In many countries, an extensive vaccination programme has substantially reduced the public-health impact of SARS-CoV-2, limiting the number of hospital admissions and deaths compared to an unmitigated epidemic. Ensuring a low-risk transition from the current situation to one in which SARS-CoV-2 is endemic requires maintenance of high levels of population immunity. The observed waning of vaccine efficacy over time suggests that booster doses may be required to maintain population immunity especially in the most vulnerable groups. Here, using data and models for England, we consider the dynamics of COVID-19 over a two-year time-frame, and the role that booster vaccinations can play in mitigating the worst effects. We find that boosters are necessary to suppress the imminent wave of infections that would be generated by waning vaccine efficacy. Projecting further into the future, the optimal deployment of boosters is highly sensitive to their long-term action. If protection from boosters wanes slowly (akin to protection following infection) then a single booster dose to the over 50s may be all that is needed over the next two-years. However, if protection wanes more rapidly (akin to protection following second dose vaccination) then annual or even biannual boosters are required to limit subsequent epidemic peaks an reduce the pressure on public health services.


Subject(s)
COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.09.21260271

ABSTRACT

Background To control within-school SARS-CoV-2 transmission in England, secondary school pupils have been encouraged to participate in twice weekly mass testing via lateral flow device tests (LFTs) from 8th March 2021, to complement an isolation of close contacts policy in place since 31st August 2020. Strategies involving the isolation of close contacts can lead to high levels of absences, negatively impacting pupils. Methods We fit a stochastic individual-based model of secondary schools to both community swab testing data and secondary school absences data. By simulating epidemics in secondary schools from 31st August 2020 until 21st May 2021, we quantify within-school transmission of SARS-CoV-2 in secondary schools in England, the impact of twice weekly mass testing on within-school transmission, and the potential impact of alternative strategies to the isolation of close contacts in reducing pupil absences. Findings The within-school reproduction number, R school , has remained below 1 from 31st August 2020 until 21st May 2021. Twice weekly mass testing using LFTs have helped to control within-school transmission in secondary schools in England. A strategy of serial contact testing alongside mass testing substantially reduces absences compared to strategies involving isolating close contacts, with only a marginal increase in within-school transmission. Interpretation Secondary school control strategies involving mass testing have the potential to control within-school transmission while substantially reducing absences compared to an isolation of close contacts policy.

3.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-547702.v1

ABSTRACT

Countries around the world have introduced travel restrictions to reduce SARS-CoV-2 transmission. As vaccines are gradually rolled out, attention has turned to when travel restrictions and other non-pharmaceutical interventions (NPIs) can be relaxed. Here, using SARS-CoV-2 as a case study, we develop a mathematical branching process model to assess the risk that, following the removal of NPIs, cases introduced into new locations initiate a local outbreak. Our model accounts for changes in background population immunity due to vaccination. We consider two locations in which the vaccine rollout has progressed quickly – specifically, the Isle of Man (a British crown dependency in the Irish Sea) and the country of Israel. We show that the outbreak risk is unlikely to be eliminated completely when travel restrictions and other NPIs are removed, even once the vaccine programmes in these locations are complete. Specifically, the risk that an imported case initiates an outbreak following the vaccine rollout and removal of NPIs is projected to be 0.373 (0.223,0.477) for the Isle of Man and 0.506 (0.387,0.588) for Israel. Key factors underlying these risks are the potential for transmission even following vaccination, incomplete vaccine uptake, and the recent emergence of SARS-CoV-2 variants with increased transmissibility. Combined, these factors suggest that when travel restrictions are relaxed, it will still be necessary to implement surveillance of incoming passengers to identify infected individuals quickly. This measure, as well as tracing and isolating contacts of detected infected passengers, should remain in place to suppress potential outbreaks until case numbers globally are reduced.

4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.22.21255949

ABSTRACT

Background Even with good progress on vaccination, SARS-CoV-2 infections in the UK may continue to impose a high burden of disease and therefore pose substantial challenges for health policy decision makers. Stringent government-mandated physical distancing measures (lockdown) have been demonstrated to be epidemiologically effective, but can have both positive and negative economic consequences. The duration and frequency of any intervention policy could, in theory, could be optimised to maximise economic benefits while achieving substantial reductions in disease. Methods Here we use a pre-existing SARS-CoV-2 transmission model to assess the health and economic implications of different strengths of control through time in order to identify optimal approaches to non-pharmaceutical intervention stringency in the UK, considering the role of vaccination in reducing the need for future physical distancing measures. The model is calibrated to the COVID-19 epidemic in England and we carry out retrospective analysis of the optimal timing of precautionary breaks in 2020 and the optimal relaxation policy from the January 2021 lockdown, considering the willingness to pay for health improvement. Results We find that the precise timing and intensity of interventions is highly dependent upon the objective of control. As intervention measures are relaxed, we predict a resurgence in cases, but the optimal intervention policy can be established dependent upon the willingness to pay (WTP) per QALY loss avoided. Our results show that establishing an optimal level of control can result in a reduction in net monetary loss of billions of pounds, dependent upon the precise WTP value. Conclusions It is vital, as the UK emerges from lockdown, but continues to face an on-going pandemic, to accurately establish the overall health and economic costs when making policy decisions. We demonstrate how some of these can be quantified, employing mechanistic infectious disease transmission models to establish optimal levels of control for the ongoing COVID-19 pandemic.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Communicable Diseases
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.04.20145334

ABSTRACT

Objective: To provide an early global assessment of the impact of government stringency measures on the rate of growth in deaths from COVID-19. We hypothesized that the overall stringency of a government's interventions and the speed of implementation would affect the growth and level of deaths related to COVID-19 in that country. Design: Observational study based on an original database of global governmental responses to the COVID-19 pandemic. Daily data was collected on a range of containment and closure policies for 170 countries from January 1, 2020 until May 27, 2020 by a team of researchers at Oxford University, UK. These data were combined into an aggregate stringency index (SI) score for each country on each day (range: 0-100). Regression was used to show correlations between the speed and strength of government stringency and deaths related to COVID-19 with a number of controls for time and country-specific demographic, health system, and economic characteristics. Interventions: Nine non-pharmaceutical interventions such as school and work closures, restrictions on international and domestic travel, public gathering bans, public information campaigns, as well as testing and contact tracing policies. Main outcomes measures: The primary outcome was deaths related to COVID-19, measured both in terms of maximum daily deaths and growth rate of daily deaths. Results: For each day of delay to reach an SI 40, the average daily growth rate in deaths was 0.087 percentage points higher (0.056 to 0.118, P<0.001). In turn, each additional point on the SI was associated with a 0.080 percentage point lower average daily growth rate (-0.121 to -0.039, P


Subject(s)
COVID-19 , Death
SELECTION OF CITATIONS
SEARCH DETAIL